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FIGURE 1

The RPA Cycle
All steps operate at low constant temperature (optimum 37°C)
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FIGURE 2

Exo-probe

Exonuclease cuts THF residue N

e $
> IIIIIIIIIIlIIIIIIIIIIIIIIHIlIIIlII/\I 3

44— 46-52 bhases ————p»

® Fam/TAMRA & BHQ1/2 A THF & exo N Biotin-TEG



U.S. Patent Jun. 16, 2015 Sheet 3 of 4 US 9,057,097 B2

FIGURE 3
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RECOMBINASE POLYMERASE
AMPLIFICATION REAGENTS AND KITS

RELATED APPLICATIONS

This application claims the benefit of priority to U.S. Pro-
visional Patent Application No. 61/184,397 filed Jun. 5, 2009,
which is hereby incorporated by reference in its entirety.

FIELD OF THE INVENTION

The present invention relates to reagents and kits, and the
use of such reagents and kits, for the amplification of nucleic
acids. More specifically, the present invention relates to the
use of reagents and kits in recombinase polymerase amplifi-
cation processes.

BACKGROUND OF THE INVENTION

Recombinase Polymerase Amplification (RPA) is a pro-
cess in which recombinase-mediated targeting of oligonucle-
otides to DNA targets is coupled to DNA synthesis by a
polymerase (U.S. Pat. No. 7,270,981 filed Feb. 21,2003; U.S.
Pat. No. 7,399,590 filed Sep. 1, 2004; U.S. Pat. No. 7,435,561
filed Jul. 25, 2006 and U.S. Pat. No. 7,485,428 filed Aug. 13,
2007, as well as, U.S. application Ser. No. 11/628,179, filed
Aug. 30, 2007; Ser. No. 11/800,318 filed May 4, 2007 and
61/179,793 filed May 20, 2009; the disclosures of the fore-
going patents and patent applications are each hereby incor-
porated by reference in its entirety ). RPA depends upon com-
ponents of the cellular DNA replication and repair machinery.
The notion of employing some of this machinery for in vitro
DNA amplification has existed for some time (Zarling et al.,
U.S. Pat. No. 5,223,414), however the concept has not trans-
formed to a working technology until recently as, despite a
long history of research in the area of recombinase function
involving principally the E. coli RecA protein, in vitro con-
ditions permitting sensitive amplification of DNA have only
recently been determined (Piepenburg et al. U.S. Pat. No.
7,399,590, also Piepenburg et al., PlosBiology 2006). Devel-
opment of a ‘dynamic’ recombination environment having
adequate rates of both recombinase loading and unloading
that maintains high levels of recombination activity for over
an hour in the presence of polymerase activity proved tech-
nically challenging and needed specific crowding agents,
notably PEG molecules of high molecular weight (e.g., Car-
bowax 20M molecular weight 15-20,000 and PEG molecular
weight 35,000), in combination with the use of recombinase-
loading factors, specific strand-displacing polymerases and a
robust energy regeneration system.

The RPA technology depended critically on the empirical
finding that high molecular weight polyethylene glycol spe-
cies (particularly >10,000 Daltons or more) very profoundly
influenced the reaction behavior. It has previously been dis-
covered that polyethylene glycol species ranging in size from
at least molecular weight 12,000 to 100,000 stimulate RPA
reactions strongly. While it is unclear how crowding agents
influence processes within an amplification reaction, a large
variety of biochemical consequences are attributed to crowd-
ing agents and are probably key to their influence on RPA
reactions.

Crowding agents have been reported to enhance the inter-
action of polymerase enzymes with DNA (Zimmerman and
Harrison, 1987), to improve the activity of polymerases
(Chan E. W. et al., 1980), to influence the kinetics of RecA
binding to DNA in the presence of SSB (Lavery P E, Kowal-
czykowski S C.J Biol Chem. 1992 May 5; 267(13):9307-14).
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Crowding agents are reported to have marked influence on
systems in which co-operative binding of monomers is
known to occur such as during rod and filament formation
(Rivas et al., 2003) by increasing association constants by
potentially several orders of magnitude (see Minton, 2001).
In the RPA system multiple components rely on co-operative
binding to nucleic acids, including the formation of SSB
filaments, recombinase filaments, and possibly the conden-
sation of loading agents such as UvsY. Crowding agents are
also well known to enhance the hybridization of nucleic acids
(Amasino, 1986), and this is a process that is also necessary
within RPA reactions. Finally, and not least, PEG is known to
drive the condensation of DNA molecules in which they
change from elongated structures to compact globular or
toroidal forms, thus mimicking structures more common in
many in vivo contexts (see Lerman, 1971; also see Vasi-
levskaya. et. al., 1995; also see Zinchenko and Anatoly, 2005)
and also to affect the supercoiling free energy of DNA (Nai-
mushin et al., 2001).

Without intending to be bound by theory, it is likely that
crowding agents influence the kinetics of multiple protein-
protein, protein-nucleic acid, and nucleic acid-nucleic acid
interactions within the reaction. The dependence on large
molecular weight crowding agents for the most substantial
reaction improvement (probably greater than about 10,000
Daltons in size) may reflect a need to restrict the crowding
effect to reaction components over a certain size (for example
oligonucleotides, oligonucleotide:protein filaments, duplex
products, protein components) while permitting efficient dif-
fusion of others (say nucleotides, smaller peptides such as
UvsY). Further, it may also be that the high molecular weight
preference might reflect findings elsewhere that as PEG
molecular weight increases the concentration of metal ions
required to promote DNA condensation decreases. In any
case it is an empirical finding that RPA is made effective by
the use of high molecular weight polyethylene glycols.

In addition to a need for specific type of ‘crowded’ reaction
conditions as described above (reaction in the presence of
crowding agents), effective RPA reaction kinetics depend on
a high degree of ‘dynamic’ activity within the reaction with
respect to recombinase-DNA interactions. In other words, the
available data which includes (i) reaction inhibition by ATP-
v-S, or removal of the acidic C terminus of RecA or UvsX, and
(i1) inhibition by excessive ATP (Piepenburg et al., 2006)
suggest that not only is it important that recombinase fila-
ments can be formed rapidly, but also important that they can
disassemble quickly. This data is consistent with predictions
made in earlier U.S. Pat. No. 7,270,981. Rapid filament for-
mation ensures that at any given moment there will be a high
steady state level of functional recombinase-DNA filaments,
while rapid disassembly ensures that completed strand
exchange complexes can be accessed by polymerases.

SUMMARY OF THE INVENTION

The invention provides a kit and reagents for, as well as
methods of, DNA amplification, termed RPA. RPA comprises
the following steps (See FIG. 1): First, a recombinase agent is
contacted with a first and a second nucleic acid primer to form
afirstand a second nucleoprotein primer. Second, the first and
second nucleoprotein primers are contacted to a double
stranded target sequence to form a first double stranded struc-
ture at a first portion of said first strand and form a double
stranded structure at a second portion of said second strand so
the 3' ends of said first nucleic acid primer and said second
nucleic acid primer are oriented towards each other on a given
template DNA molecule. Third, the 3' end of said first and
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second nucleoprotein primers are extended by DNA poly-
merases to generate first and second double stranded nucleic
acids, and first and second displaced strands of nucleic acid.
Finally, the second and third steps are repeated until a desired
degree of amplification is reached.

In one aspect, embodiments of the present invention pro-
vide compositions and kits for recombinase polymerase
amplification processes of DNA amplification of a target
nucleic acid molecule, which include one or more freeze
dried pellets. For example, each freeze dried pellet includes a
combination of the following reagents in the following con-
centrations (which unless otherwise indicated can be the con-
centration either when reconstituted or when freeze dried):
(1) 1.5%-5% (weight/lyophilization mixture volume) of
polyethylene glycol (e.g., 2.28% (weight/lyophilization mix-
ture volume) of polyethylene glycol with a molecular weight
of 35 kilodaltons); (2) 2.5%-7.5% weight/volume of treha-
lose (e.g., 5.7%); (3) 0-60 mM Tris buffer; (4) 1-10 mM DTT;
(5) 150-400 uM dNTPs; (6) 1.5-3.5 mM ATP; (7) 100-350
ng/ul, uvsX recombinase; (8) optionally 50-200 ng/uL. uvsY;
(9) 150-800 ng/ul. gp32; (10) 30-150 ng/ulL Bacillus subtilis
PolI (Bsu) polymerase or S. aureus Pol I large fragment (Sau
polymerase); (11) 20-75 mM phosphocreatine; and (12)
10-200 ng/ul. creatine kinase.

In another aspect, rehydration buffers for reconstituting
freeze dried pellets for nucleic acid amplification are pro-
vided. In some embodiments, the rehydration buffer for
reconstituting the freeze dried pellets are included with the
kits described herein and, the rehydration buffer includes
0-60 mM Tris buffer, 50-150 mM Potassium Acetate, and
2.5%-7.5% weight/volume of polyethylene glycol. In certain
embodiments, the kits further include a 160-320 mM Mag-
nesium Acetate solution.

In certain embodiments of the compositions and kits
described herein, the freeze dried pellets also include the first
and/or the second nucleic acid primers for the RPA process. In
certain embodiments of the foregoing kits, the freeze dried
pellets also include a nuclease. For example, the nuclease is
exonuclease 111 (exolll), endonuclease IV (Nfo) or 8-oxogua-
nine DNA glycosylase (fpg).

In certain embodiments of the compositions and kits
described herein, the kits or compositions may further include
positive control primers and target DNA to test the activity of
the kit components. For example, the kit can include a posi-
tive control DNA (e.g., human genomic DNA) and first and
second primers specific for the positive control DNA.

In another aspect, methods of recombinase polymerase
amplification are provided comprising the following steps:
First, one of the kits or compositions described herein that
include one or more freeze dried pellets and rehydration
buffer is provided. Second, at least one of the freeze dried
pellets is reconstituted, in any order, with the rehydration
buffer, the first and the second nucleic acid primers for the
RPA process, the target nucleic acid, and optionally water to
a desired volume. Third, Magnesium (e.g., Magnesium
Acetate solution) is added to initiate the reaction. Finally, the
reaction is incubated until a desired degree of amplification is
achieved. In some embodiments, this last step comprises mix-
ing the sample several minutes after the reaction is initiated.

In yet another aspect, embodiments of the present inven-
tion also provide methods to control RPA reactions, achieved
by initiating the RPA reaction with the addition of Magne-
sium (e.g., with Magnesium Acetate). For example, the meth-
ods include at least three steps. In the first step, the following
reagents are combined in a solution in the absence of Mag-
nesium: (1) at least one recombinase; (2) at least one single
stranded DNA binding protein; (3) at least one DNA poly-
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merase; (4) ANTPs or a mixture of ANTPs and ddNTPs; (5) a
crowding agent (e.g., polyethylene glycol); (6) a buffer; (7) a
reducing agent; (8) ATP or ATP analog; (9) optionally at least
one recombinase loading protein; (10) a first primer and
optionally a second primer; and (11) a target nucleic acid
molecule. In the second step, Magnesium is added to initiate
the reaction. In the third step, the reaction is incubated until a
desired degree of amplification is achieved. In certain
embodiments, one or more of the reagents are freeze dried
before the first step.

In yet another aspect, embodiments of the present inven-
tion also include nucleic acid amplification mixtures for iso-
thermal nucleic acid amplification. For example, the mixtures
include at least: (1) at least one recombinase; (2) at least one
single stranded DNA binding protein; (3) at least one strand
displacing polymerase DNA polymerase; (4) dNTPs or a
mixture of ANTPs and ddNTPs; (5) ATP or ATP analog; (6)
trehalose; (7) optionally at least one recombinase loading
protein; (8) optionally polyethylene glycol (9) optionally a
first primer and optionally a second primer; and (10) option-
ally a target nucleic acid molecule.

In another aspect, embodiments of the present invention
include kits for nucleic acid amplification processes, such as
isothermal nucleic acid amplification processes (e.g., RPA
amplification of DNA) a target nucleic acid molecule, which
include one or more freeze dried pellets. In some embodi-
ments, the freeze dried pellets comprise polyethylene glycol.
For example, the amount of polyethylene glycol in the freeze
dried pellets is an amount to allow the amplification process
to proceed (0.3%-7.5% weight/lyophilization mixture vol-
ume of PEG). In some embodiments, the freeze dried pellets
comprise trehalose. For example, the amount of trehalose in
the freeze dried pellets is 2.5%-7.5% weight/lyophilization
mixture volume of trehalose.

In yet another aspect, embodiments of the present inven-
tion include any of the freeze dried pellets described herein. In
some embodiments, the freeze dried pellets comprise poly-
ethylene glycol. For example, the amount of polyethylene
glycol in the freeze dried pellets is an amount to allow the
amplification process to proceed (0.3%-7.5% weight/lyo-
philization mixture volume of PEG). In some embodiments,
the freeze dried pellets comprise trehalose. For example, the
amount of trehalose in the freeze dried pellets is 2.5%-7.5%
weight/lyophilization mixture volume of trehalose.

In yet another aspect, embodiments of the present inven-
tion include rehydration buffers for reconstituting the freeze
dried pellets described herein. In some embodiments, the
rehydration buffer comprises polyethylene glycol (e.g.,
0.3%-7.5% weight/volume of PEG). In some embodiments, a
kit comprising any of the foregoing rehydration buffers is
provided.

Other embodiments, objects, aspects, features, and advan-
tages of the invention will be apparent from the accompany-
ing description and claims. It is contemplated that whenever
appropriate, any embodiment of the present invention can be
combined with one or more other embodiments of the present
invention, even though the embodiments are described under
different aspects of the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 schematically depicts an RPA reaction.

FIG. 2 depicts the structure of an annealed Exo-probe. The
abasic THF residue is cleaved by exonuclease only when the
probe is bound. Cleavage by exonuclease separates the fluo-
rophore and quencher and generates fluorescent signal.
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FIG. 3 depicts the structure of an annealed L.F-probe. The
abasic THF residue is cleaved by Nfo only when the probe is
bound.

FIG. 4 depicts the structure of an annealed Fpg-probe. The
abasic dR residue is cleaved by fpg only when the probe is
bound. Cleavage by fpg releases the fluorophore from the
probe and generates fluorescent signal.

DETAILED DESCRIPTION OF THE INVENTION

Brief Description of RPA

RPA is a method (process) for amplifying DNA fragments.
RPA employs enzymes, known as recombinases, that are
capable of pairing oligonucleotide primers with homologous
sequence in duplex DNA. In this way, DNA synthesis is
directed to defined points in a sample DNA. Using two gene-
specific primers, an exponential amplification reaction is ini-
tiated if the target sequence is present. The reaction
progresses rapidly and results in specific amplification from
just a few target copies (such as less than 10,000 copies, less
than 1000 copies, less than 100 copies or less than 10 copies)
to detectable levels within as little as 20-40 minutes.

RPA reactions contain a blend of proteins and other factors
that are required to support both the activity of the recombi-
nation element of the system, as well as those which support
DNA synthesis from the 3' ends of oligonucleotides paired to
complementary substrates. The key protein component of the
recombination system is the recombinase itself, which may
originate from prokaryotic, viral or eukaryotic origin. Addi-
tionally, however, there is a requirement for single-stranded
DNA binding proteins to stabilize nucleic acids during the
various exchange transactions that are ongoing in the reac-
tion. A polymerase with strand-displacing character is
required specifically as many substrates are still partially
duplex in character. Reduction to practice has established that
in order to make the reaction capable of amplifying from trace
levels of nucleic acids precise in vitro conditions are required
that include the use of crowding agents and loading proteins.
A system comprising a bacteriophage T6 UvsX recombinase
(e.g., T6UvsXH66S), a bacteriophage Rb69 UvsY loading
agent, a bacteriophage Rb69 gp32 and a S. aureus Pol I large
fragment has proven to be effective.

Embodiments of the present invention provide for Recom-
binase Polymerase Amplification (RPA)—a method for the
amplification of target nucleic acid polymers. They also pro-
vide for a general in vitro environment in which high recom-
binase activity is maintained in a highly dynamic recombina-
tion environment, supported by ATP. One benefit of RPA is
that it may be performed without the need for thermal melting
of' double-stranded templates. Therefore, the need for expen-
sive thermocyclers is also eliminated.

Throughout this specification, various patents, published
patent applications and scientific references are cited to
describe the state and content of the art. Those disclosures, in
their entireties, are hereby incorporated into the present speci-
fication by reference.

In Recombinase Polymerase Amplification single-
stranded, or partially single-stranded, nucleic acid primers
are targeted to homologous double-stranded, or partially
double-stranded, sequences using recombinase agents, which
form D-loop structures. The invading single-stranded prim-
ers, which are part of the D-loops, are used to initiate poly-
merase synthesis reactions. A single primer species will
amplify a target nucleic acid sequence through multiple
rounds of double-stranded invasion followed by synthesis. If
two opposing primers are used, amplification of a fragment—
the target sequence—can be achieved.
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The target sequence to be amplified, in any of the embodi-
ments of the present invention, is preferably a double stranded
DNA. However, the embodiments of the present invention are
not limited to double stranded DNA because other nucleic
acid molecules, such as a single stranded DNA or RNA can be
turned into double stranded DNA by one of skill in the art
using known methods. Suitable double stranded target DNA
may be a genomic DNA or a cDNA. An RPA of the invention
may amplify a target nucleic acid at least 10 fold, preferably
at least 100 fold, more preferably at least 1,000 fold, even
more preferably at least 10,000 fold, and most preferably at
least 1,000,000 fold.

The terms ‘nucleic acid polymer’ or ‘nucleic acids’ as used
in this description can be interpreted broadly and include
DNA and RNA as well as other hybridizing nucleic-acid-like
molecules such as those with substituted backbones e.g. pep-
tide nucleic acids (PNAs), morpholino backboned nucleic
acids, locked nucleic acid or other nucleic acids with modi-
fied bases and sugars.

In addition, nucleic acids of embodiments of the present
invention may be labeled with a detectable label. A detectable
label includes, for example, a fluorochrome, an enzyme, a
fluorescence quencher, an enzyme inhibitor, a radioactive
label and a combination thereof.

Lyophilization of the RPA Reaction

One advantage of RPA is that the reagents for RPA, may be
freeze dried (i.e., lyophilized) before use. Freeze dried
reagents offer the advantage of not requiring refrigeration to
maintain activity. For example, a tube of RPA reagents may
be stored at room temperature. This advantage is especially
useful in field conditions where access to refrigeration is
limited. Freeze dried reagents also offer the advantage of long
term storage without significant activity loss. For example, a
tube of RPA reagents may be stored at —20° C. for up to six
months without significant activity loss.

While lyophilization is a well-established process there is
no guarantee that all components of a reaction system will
successfully be co-lyophilized and reconstituted under the
same conditions. We have attempted to lyophilize RPA reac-
tions with and without various of the final reaction compo-
nents. The disaccharide sugar trehalose proves in these
experiments to be required to stabilize the lyophilisate, per-
mitting room temperature storage for at least 10 days. We
have also found that it is preferable to exclude the salt (e.g.,
Potassium Acetate) and reduce the buffer concentration to 25
mM of Tris or less from the lyophilisate, to maximize its
stability—particularly for storage above 0° C.

We have also found that, if salt is present in the lyophilisate,
polyethylene glycol is required to stabilize the lyophilisate.
By contrast, if salt is not present, then PEG is not required to
stabilize the lyophilizate, and need only be provided in the
rehydration buffer. A typical RPA reaction will have a final
PEG concentration in the reaction of 5%-6% (w/v).

In addition trehalose and PEG, the reagents that can be
freeze dried before use can include, at least, the recombinase,
the single stranded DNA binding protein, the DNA poly-
merase, the ANTPs or the mixture of ANTPs and ddNTPs, the
reducing agent, the ATP or ATP analog, the recombinase
loading protein, and the first primer and optionally a second
primer or a combination of any of these.

In some embodiments, the RPA reagents may be freeze
dried onto the bottom of a tube, or on a bead (or another type
of solid support). In use, the reagents are reconstituted with
buffer (a) Tris-Acetate buffer at a concentration of between 0
mM to 60 mM; (b) 50 mM to 150 mM Potassium Acetate and
(c) polyethylene glycol at a concentration of between 2.5% to
7.5% by weight/volume. If the primers were not added before
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freeze drying, they can be added at this stage. Finally, a target
nucleic acid, or a sample suspected of containing a target
nucleic acid is added to begin the reaction. The target, or
sample, nucleic acid may be contained within the reconstitu-
tion buffer as a consequence of earlier extraction or process-
ing steps. The reaction is incubated until a desired degree of
amplification is achieved.

We have found that it is possible to increase the sensitivity
of'the RPA reaction by agitating or mixing the sample several
minutes (e.g., two, three, four, five or six minutes) after recon-
stituting and initiating the reaction. For example, after recon-
stituting and initiating the RPA reaction, the tube containing
the RPA reaction is placed into an incubator block set to a
temperature of 37° C. and is incubated for 4 minutes. The
sample is then taken out of the incubator, vortexed and spun
down. The sample is then returned to the incubator block and
incubated for an additional 15-40 minutes.

In one aspect, embodiments of the present invention com-
prise kits for performing RPA reactions. In certain embodi-
ments, the kits include one or more freeze dried pellets each
including a combination of reagents for performing RPA
reactions. In certain embodiments, the kits comprise 8 freeze
dried pellets. In some embodiments, the kits comprise 96
freeze dried pellets. If desired, the freeze dried reagents may
be stored for 1 day, 1 week, 1 month or 1 year or more before
use.

In certain embodiments, the pellets can be assembled by
combining each reagent in the following concentrations
(which unless otherwise indicated can be the concentration
either when reconstituted or when freeze dried): (1) 1.5%-5%
(weight/lyophilization mixture volume) of polyethylene gly-
col; (2) 2.5%-7.5% weight/volume of trehalose; (3) 0-60 mM
Tris buffer; (4) 1-10 mM DTT; (5) 150-400 uM dNTPs; (6)
1.5-3.5 mM ATP; (7) 100-350 ng/ul. uvsX recombinase; (8)
optionally 50-200 ng/uL. uvsY; (9) 150-800 ng/ul. gp32; (10)
30-150 ng/ul. Bsu polymerase or Sau polymerase; (11) 20-75
mM phosphocreatine; and (12) 10-200 ng/uL creatine kinase.
For example, the reagents in the solution mixture frozen for
lyophilization can have approximately the following concen-
trations: (1) 2.28% weight/volume of polyethylene glycol
with a molecular weight of 35 kilodaltons; (2) 5.7% weight/
volume of trehalose; (3) 25 mM Tris buffer; (4) 5 mM DTT;
(5) 240 uM dNTPs; (6) 2.5 mM ATP; (7) 260 ng/ul. uvsX
recombinase; (8) 88 ng/ul uvsY; (9) 254 ng/ul. gp32; (10) 90
ng/ul, Bsu polymerase or Sau polymerase; (11) 50 mM phos-
phocreatine; and (12) 100 ng/ul. creatine kinase. The reagents
may be freeze dried onto the bottom of a tube or in a well of
a multi-well container. The reagents may be dried or attached
onto a mobile solid support such as a bead or a strip, or a well.

While it is often preferred that the volume of the reagent
mixture that is frozen and lyophilized is the same as the final
volume of the RPA reaction after rehydration, this is not
necessary. For example, an 80 pl, volume of reagents can be
freeze dried, which can then be reconstituted to a final RPA
reaction volume of 50 pL.

In certain embodiments, the kits further include a rehydra-
tion buffer for reconstituting the freeze dried pellets, where
the rehydration buffer includes 0-60 mM Tris buffer, 50-150
mM Potassium Acetate, and 0.3%-7.5% weight/volume of
polyethylene glycol. For example, the rehydration buffer
includes approximately 25 mM Tris buffer, 100 mM Potas-
sium Acetate, and 5.46% weight/volume of polyethylene gly-
col with a molecular weight of 35 kilodaltons. In certain
embodiments, the kit will comprise 4 ml. of rehydration
buffer.

In certain embodiments, the kits further include a 160-320
mM Magnesium Acetate solution (e.g., about 280 mM Mag-
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nesium Acetate solution). In some embodiments, the kit will
comprise 250 ul, of the Magnesium Acetate solution. In other
embodiments, the rehydration bufter itself will comprise 8-16
mM Magnesium Acetate (e.g., about 14 mM Magnesium
Acetate).

In certain embodiments of the foregoing kits, the freeze
dried pellets also include the first and/or the second nucleic
acid primers for the RPA process. In certain embodiments of
the foregoing kits, the freeze dried pellets also include 50-200
ng/ul. of either exonuclease III (exolll), endonuclease IV
(Nfo) or 8-oxoguanine DNA glycosylase (fpg).

In any of the foregoing embodiments, the kit may further
include positive control primers and target DNA to test the
activity of the kit components. For example, the kit can
include a positive control DNA (e.g., human genomic DNA)
and first and second primers specific for the positive control
DNA.

In yet another aspect, embodiments of the present inven-
tion also include nucleic acid amplification mixtures for iso-
thermal nucleic acid amplification. For example, the mixtures
include at least: (1) at least one recombinase; (2) at least one
single stranded DNA binding protein; (3) at least one strand
displacing polymerase DNA polymerase; (4) dNTPs or a
mixture of ANTPs and ddNTPs; (5) ATP or ATP analog; (6)
trehalose; (7) optionally at least one recombinase loading
protein; (8) optionally polyethylene glycol (9) optionally a
first primer and optionally a second primer; and (10) option-
ally a target nucleic acid molecule.

In another aspect, embodiments of the present invention
include kits for nucleic acid amplification processes, such as
isothermal nucleic acid amplification processes (e.g., RPA
amplification of DNA) a target nucleic acid molecule, which
include one or more freeze dried pellets. In some embodi-
ments, the freeze dried pellets comprise polyethylene glycol.
For example, the amount of polyethylene glycol in the freeze
dried pellets is an amount to allow the amplification process
to proceed (0.3%-7.5% weight/lyophilization mixture vol-
ume of PEG). In some embodiments, the freeze dried pellets
comprise trehalose. For example, the amount of trehalose in
the freeze dried pellets is 2.5%-7.5% weight/lyophilization
mixture volume of trehalose.

In yet another aspect, embodiments of the present inven-
tion include any of the freeze dried pellets described herein. In
some embodiments, the freeze dried pellets comprise poly-
ethylene glycol. For example, the amount of polyethylene
glycol in the freeze dried pellets is an amount to allow the
amplification process to proceed (0.3%-7.5% weight/lyo-
philization mixture volume of PEG). In some embodiments,
the freeze dried pellets comprise trehalose. For example, the
amount of trehalose in the freeze dried pellets is 2.5%-7.5%
weight/lyophilization mixture volume of trehalose.

In yet another aspect, embodiments of the present inven-
tion include rehydration buffers for reconstituting the freeze
dried pellets described herein. In some embodiments, the
rehydration buffer comprises polyethylene glycol (e.g.,
0.3%-7.5% weight/volume of PEG). In some embodiments, a
kit comprising any of the foregoing rehydration buffers is
provided.

RPA initiation by Magnesium

In another aspect, methods of recombinase polymerase
amplification are provided comprising the following steps:
First, one of the foregoing kits that include one or more freeze
dried pellets and rehydration buffer is provided. Second, at
least one of the freeze dried pellets is reconstituted, in any
order, with the rehydration bufter, the first and the second
nucleic acid primers for the RPA process, the target nucleic
acid, and optionally water to a desired volume. Third, Mag-
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nesium (e.g., Magnesium Acetate solution) is added to initiate
the reaction. Finally, the reaction is incubated until a desired
degree of amplification is achieved.

RPA is a versatile method, but it can be improved by
incorporation of features to control the RPA reaction.
Embodiments of the present invention also provide methods
to control RPA reactions, achieved by initiating the RPA
reaction with the addition of Magnesium (e.g., with Magne-
sium Acetate). For example, the method includes at least three
steps. In the first step, the following reagents are combined in
a solution in the absence of Magnesium: (1) at least one
recombinase; (2) at least one single stranded DNA binding
protein; (3) at least one DNA polymerase; (4) dNTPs or a
mixture of ANTPs and ddNTPs; (5) a crowding agent (e.g.,
polyethylene glycol); (6) a buffer; (7) a reducing agent; (8)
ATP or ATP analog; (9) optionally at least one recombinase
loading protein; (10) a first primer and optionally a second
primer; and (11) a target nucleic acid molecule. In the second
step, Magnesium is added to initiate the reaction. In the third
step, the reaction is incubated until a desired degree of ampli-
fication is achieved. In certain embodiments, one or more of
the reagents are freeze dried before the first step. Further-
more, it is possible to initiate a plurality of RPA reactions
simultaneously by the simultaneous addition of Magnesium
to each reaction.

EXAMPLES

The present invention is further defined in the following
Examples. It should be understood that these Examples,
while indicating preferred embodiments of the invention, are
given by way of illustration only. From the above discussion
and these Examples, one skilled in the art can ascertain the
essential characteristics of this invention, and without depart-
ing from the spirit and scope thereof, can make various
changes and modifications of the invention to adapt it to
various uses and conditions.

Example 1

Reagents for RPA Reactions

To form a freeze dried reaction pellet for a typical single
basic RPA reaction, the following RPA reagents with the
indicated concentrations are freeze dried (lyophilized) onto
the bottom of a tube:

Basic RPA Freeze Dried Reaction Pellet

Component Concentration
PEG 35,000 2.28% (wihv)
Trehalose 5.7% (w/v)
UvsX recombinase 260 ng/ul
UvsY 88 ng/uL
Gp32 254 ng/uL
Sau polymerase 90 ng/ul
ATP 2.5 mM
dNTPs 240 uM
Tris buffer 25 mM
DIT 5 mM
Phosphocreatine 50 mM
Creatine kinase 100 ng/uL
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For reconstituting the freeze dried reaction pellet, a rehy-
dration solution is prepared from the following rehydration
buffer:

Rehydration Buffer

Component Concentration
Tris buffer 25 mM
Potassium Acetate 100 mM
PEG 35,000 5.46% (w/v)

Unlike PCR, which requires small volumes for rapid tem-
perature change, there is no limit to the reaction volume of
RPA. Reaction volumes of 25 ul, 50 ulL, 100 ul, 1 mL, 10 mL
and 100 mL or larger may be performed in one vessel. For the
examples given below, a reaction volume of 50 pL is used.

To permit monitoring of the RPA reaction, a nuclease may
also be added to each freeze dried reaction pellet. For
example, the “Exo RPA Freeze Dried Reaction Pellet” is the
basic RPA freeze-dried reaction pellet plus 96 ng/ul. exonu-
clease III (exolll). Similarly, the “Nfo RPA Freeze Dried
Reaction Pellet” is the basic RPA freeze-dried reaction pellet
plus 62 ng/ul. endonuclease IV (Nfo). Finally, the “Fpg RPA
Freeze Dried Reaction Pellet” is the basic RPA freeze-dried
reaction pellet plus 114 ng/ulL 8-oxoguanine DNA glycosy-
lase (fpg).

The tubes with the freeze dried pellets can be vacuum-
sealed in pouches, for example in 12 strips of 8 pouches/strip
for a total of 96 RPA reactions. While the vacuum-sealed
pouches can be stored at room temperature for days without
loss of activity, long term storage (up to at least about six
months) at -20° C. is preferred. The rehydration buffer can be
stored as frozen aliquots, for example 4x1.2 mL aliquots. For
long term storage (up to at least about six months), storage at
-20° C. is preferred. Unused rehydration buffer can be refro-
zen, or stored at 4° C. for up to 1 week. However, excessive
freeze-thaw cycles should be avoided.

Example 2

Basic RPA Reaction

A basic RPA reaction for each sample is established by
reconstituting the basic RPA freeze-dried reaction pellet of
Example 1 with a suitable rehydration solution. The rehydra-
tion solution is prepared from the rehydration buffer of
Example 1, amplification primers, and template (and water to
a total volume of 47.5 pL. per sample).

The components of the rehydration solution can be com-
bined in a master-mix for the number of samples required. In
some circumstances, for example when performing a primer
screen, a number of different rehydration solutions are to be
made (here according to the number of primer pairs being
tested). In that case components common to all reactions
(e.g., template, rehydration buffer, water) is prepared as a
master-mix, distributed in a corresponding volume into fresh
tubes, and is combined with the required volume of the dif-
ferent primer pairs. The different rehydration solutions are
then used as normal according to the protocol below.

The reaction is initiated by the addition of 2.5 pulL of a 280
mM Magnesium-Acetate solution, bringing the final reaction
volume to 50 pL. per sample.

For each sample, the rehydration solution is prepared by
adding 2.4 ul, of the first primer (10 uM), 2.4 ulL of the second
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primer (10 uM), the Template and H,O to a total volume of 18
pL. 29.5 nL of the rehydration buffer of Example 1 is added.
The rehydration solution is then vortexed and is spun briefly.

For each sample, the 47.5 pl. of rehydration solution is
transferred to a basic RPA freeze-dried reaction pellet of
Example 1. The sample is mixed by pipetting up and down
until the entire pellet has been resuspended.

For each sample, 2.5 ul, of 280 mM Magnesium-Acetate is
added and is mixed well. One way to do this simultaneously
for many samples is to place the Magnesium-Acetate into the
lid of the reaction tubes and then spin it down into the tubes to
initiate the reactions. The reaction mixture is vortexed briefly
and is spun down once again.

The tubes are place into a suitable incubator block (e.g., set
to a temperature of 37-39° C.) and are incubated for 4 min-
utes. For ultra-high sensitivity, after 4 minutes, the samples
are taken out of the incubator, vortexed, spun down and
returned to the incubator block. The total incubation time is
20-40 minutes. If a timecourse of the reaction is desired the
incubation time is adjusted as required. After the reaction is
completed, the outcome of each reaction is typically analyzed
by an endpoint method, such as agarose-gel-electrophoresis.

Example 3
Detection Probes for Use with RPA Reactions

A detection probe can be used to monitor RPA reactions.
The probe is a third oligonucleotide primer which recognizes
the target amplicon and is typically homologous to sequences
between the main amplification primers. The use of fluoro-
phore/quencher with probes in real-time detection formats is
avery convenient way to monitor amplification events in RPA
reactions.

RPA technology is compatible with a variety of different
types of oligonucleotide probes. The structures of three
types—Exo-probes, LF-probes, and Fpg-probes—are each
discussed below.

Exo-Probes

Exo-probes are generally 46-52 oligonucleotides long.
Signal is generated by an internal dT fluorophore (Fluores-
cein or TAMRA) and quenched by an internal dT quencher
(typically Black Hole Quencher (BHQ) 1 or 2) located 1-5
bases 3' to the fluorophore. In this case, probes are restricted
to contain sequences where two thymines can be found with
<6 intervening nucleotides. One of the bases between the
fluorophore and quencher is the abasic nucleotide analog,
tetrahydrofuran (THF—sometimes referred to as a
‘dSpacer’). There should be at least 30 nucleotides placed 5'
to the THF site, and at least a further 15 located 3' to it. When
the probe has hybridized to the target sequence, Exonuclease
IIT will recognize and cleave the THF, thereby separating the
fluorophore and quencher and generating a fluorescent signal.
The THF should be at least 31 bases from the 5' end of the
probe and 16 bases from the 3' end. Finally, the probe is
blocked from polymerase extension by a 3'-blocking group
(e.g., Biotin-TEG). FIG. 2 depicts a typical annealed Exo-
probe.

While there is no fixed rule describing the best position of
agiven probe relative to its corresponding amplification prim-
ers, care must be taken to avoid the possibility that primer
artefacts can be detected by the probe. Although primers that
have the same direction as the probe can even overlap its 5'
part, this overlap must not extend up to the fluorophore/
abasic-site/quencher portion of the probe (i.e., the overlap of
the primer should be restricted to the 5'-most 27 nucleotides
of the probe or so). This design will prevent the inadvertent
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generation of hybridization targets for the ‘sensitive’
sequence element of the probe by primer artefacts. Primers
opposing the direction of the probe should not overlap to
avoid the occurrence of primer-probe dimers.

LF-Probes

LF-probes are often 46-52 oligonucleotides long and
intended for detection of RPA reactions in simple sandwich
assays such as lateral flow strips. The probe is blocked from
polymerase extension by making the last nucleotide a
dideoxy nucleotide. As in an Exo-probe, a THF is typically
positioned about 30 bases from the 5' end of the probe and 16
bases from the 3' end. When the probe has annealed to the
target sequence, Nfo nuclease will recognize and cleave the
THEF. This allows the 5' portion of the cut probe to then act as
a primer, ultimately leading to an amplicon containing the 5'
portion of the probe conjoined to the opposing primer. The
amplicon is detected by virtue of labels attached to the 5' end
of'the opposing primer (usually biotin) and to the 5' end of the
probe (usually FAM). The duplex formed is captured on a
surface coated with the appropriate capture molecule (e.g.,
streptavidin for biotin or an anti-FAM antibody for FAM).
RPA products are run on lateral flow strips, such as available
from Milenia Biotec. FIG. 3 depicts a typical annealed LF-
probe.

While there is no fixed rule describing the best position of
agiven probe relative to its corresponding amplification prim-
ers, care must be taken to avoid the possibility that primer
artefacts can be detected by the probe. Although primers that
have the same direction as the probe can even overlap its 5'
part, this overlap must not extend up to the abasic-site portion
of the probe (i.e., the overlap of the primer should be
restricted to the 5'-most 27 nucleotides of the probe or s0).
This design will prevent the inadvertent generation of hybrid-
ization targets for the ‘sensitive’ sequence element of the
probe by primer artefacts. Primers opposing the direction of
the probe should not overlap to avoid the occurrence of
primer-probe dimers. The opposing amplification primer is
usually labelled with biotin.

Fpg-Probes

Fpg-probes are generally 35 oligonucleotides long. At the
5" end of the probe is a quencher (typically Black Hole
Quencher (BHQ) 1 or 2). Signal is generated by a fluorophore
(typically FAM or Texas Red) attached to the ribose of a
base-less nucleotide analog (a so-called dR residue; a fluoro-
phore/O-linker effectively replaces the base at the C1 position
of the ribose) 4-6 bases downstream of the 5' end. When the
probe has annealed to the target sequence, fpg will recognize
and cleave the dR, thereby releasing the fluorophore from the
probe and generating a fluorescent signal. Finally, the probe is
blocked from polymerase extension by a 3'-blocking group
(e.g., Biotin-TEG). F1G. 4 is a schematic of atypical annealed
Fpg-probe. FIG. 7 depicts the structure of an annealed Fpg-
probe. The abasic dR residue is cleaved by fpg only when the
probe is bound. This releases the fluorophore from the probe
and generates fluorescent signal.

While there is no fixed rule describing the best position of
a given Fpg-probe relative to the amplification primers with
which it is used, care must be taken to avoid the possibility
that primer artefacts can be detected by the probe. As a result
any overlap between primers and the probe should be
avoided.

Example 4

RPA Reaction with Real Time Monitoring Using
Exonuclease 11

A RPA reaction using exonuclease 111 is performed using a
modified protocol of Example 2. Each sample is established
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by reconstituting the Exo RPA Freeze Dried Reaction Pellet
of Example 1 with a suitable rehydration solution. The rehy-
dration solution is prepared from the rehydration buffer of
Example 1, amplification primers, template and an Exo-probe
(and water to a total volume of 47.5 ulL per sample). The
reaction is initiated by the addition of 2.5 uL. of a 280 mM
Magnesium-Acetate solution, bringing the final reaction vol-
ume to 50 pl per sample.

For each sample, the rehydration solution is prepared by
adding 2.4 ul ofthe first primer (10 uM), 2.4 ul, of the second
primer (10 uM), the Template and 0.6 pul. of an Exo-probe (10
uM) as described in Example 3. H,O is added to bring the
total volume of the foregoing components to 18 ut. 29.5 plL of
the rehydration buffer of Example 1 is added. The rehydration
solution is then vortexed and is spun briefly.

For each sample, the 47.5 pl. of rehydration solution is
transferred to an Exo RPA Freeze Dried Reaction Pellet of
Example 1. The sample is mixed by pipetting up and down
until the entire pellet has been resuspended. For each sample,
2.5 uL, of 280 mM Magnesium-Acetate is added and is mixed
well to initiate the reaction.

The tubes are place into a suitable thermal incubator/fluo-
rometer (e.g., isothermally set to a temperature of 37-39° C.)
and are incubated while fluorescence measurements are peri-
odically taken. After 4 minutes, the samples are taken out of
the incubator, vortexed, spun down and returned to the incu-
bator/fluorometer. The total incubation/detection time is 20
minutes.

Example 5
RPA Reaction Using Nfo

A RPA reaction using Nfo is performed using a modified
protocol of Example 2. Each sample is established by recon-
stituting the Nfo RPA Freeze Dried Reaction Pellet of
Example 1 with a suitable rehydration solution. The rehydra-
tion solution is prepared from the rehydration buffer of
Example 1, amplification primers, template and an LF-probe
(and water to a total volume of 47.5 nL per sample). The
reaction is initiated by the addition of 2.5 uL. of a 280 mM
Magnesium-Acetate solution, bringing the final reaction vol-
ume to 50 pl per sample.

For each sample, the rehydration solution is prepared by
adding 2.4 ul ofthe first primer (10 uM), 2.4 ul, of the second
primer (10 uM), the Template and 0.6 uLL of an LF-probe (10
uM) as described in Example 3. H,O is added to bring the
total volume of the foregoing components to 18 ul.. 29.5 pl
it of the rehydration buffer of Example 1 is added. The rehy-
dration solution is then vortexed and is spun briefly.

For each sample, the 47.5 pl. of rehydration solution is
transferred to an Nfo RPA Freeze Dried Reaction Pellet of
Example 1. The sample is mixed by pipetting up and down
until the entire pellet has been resuspended. For each sample,
2.5 uL, of 280 mM Magnesium-Acetate is added and is mixed
well to initiate the reaction.

The tubes are place into a suitable incubator block (e.g., set
to a temperature of 37-39° C.) and are incubated for 4 min-
utes. For ultra-high sensitivity after 4 minutes, the samples
are taken out of the incubator, vortexed, spun down and
returned to the incubator block. The total incubation time is
15-30 minutes. After the reaction is completed, the outcome
of'each reaction is typically analyzed by an endpoint method,
such as a sandwich assay technique.

10

15

20

25

30

35

40

45

50

55

60

65

14
Example 6

RPA Reaction with Real Time Monitoring Using Fpg

A RPA reaction using fpg is performed using a modified
protocol of Example 2. Each sample is established by recon-
stituting the Fpg RPA Freeze Dried Reaction Pellet of
Example 1 with a suitable rehydration solution. The rehydra-
tion solution is prepared from the rehydration buffer of
Example 1, amplification primers, template and an Fpg-probe
(and water to a total volume of 47.5 ulL per sample). The
reaction is initiated by the addition of 2.5 uL. of a 280 mM
Magnesium-Acetate solution, bringing the final reaction vol-
ume to 50 plL per sample.

For each sample, the rehydration solution is prepared by
adding 2.40 pl. of the first primer (10 uM), 2.40 ulL of the
second primer (10 pM), the Template and 0.6 L of an Fpg-
probe (10 uM) as described in Example 3. H,O is added to
bring the total volume of the foregoing components to 18 pL..
29.5 ulL of the rehydration buffer of Example 1 is added. The
rehydration solution is then vortexed and is spun briefly.

For each sample, the 47.5 ul. of rehydration solution is
transferred to an Fpg RPA Freeze Dried Reaction Pellet of
Example 1. The sample is mixed by pipetting up and down
until the entire pellet has been resuspended. For each sample,
2.5 ulL of 280 mM Magnesium-Acetate is added and is mixed
well to initiate the reaction.

The tubes are place into a suitable thermal incubator/fluo-
rometer (e.g., isothermally set to a temperature of 37-39° C.)
and are incubated while fluorescence measurements are peri-
odically taken. After 4 minutes, the samples are taken out of
the incubator, vortexed, spun down and returned to the incu-
bator/fluorometer. The total incubation/detection time is 20
minutes.

The details of one or more embodiments of the invention
have been set forth in the accompanying description above.
Although any methods and materials similar or equivalent to
those described herein can be used in the practice or testing of
the present invention, the preferred methods and materials are
now described. Other features, objects, and advantages of the
invention will be apparent from the description and from the
claims.

In the specification and the appended claims, the singular
forms include plural referents unless the context clearly dic-
tates otherwise. Unless defined otherwise, all technical and
scientific terms used herein have the same meaning as com-
monly understood by one of ordinary skill in the art to which
this invention belongs. Unless expressly stated otherwise, the
techniques employed or contemplated herein are standard
methodologies well known to one of ordinary skill in the art.
All sequence citations, patents, patent applications and pub-
lications cited in this specification are hereby incorporated by
reference herein, including the disclosures provided by U.S.
Pat. No. 7,270,981 filed Feb. 21, 2003; U.S. Pat. No. 7,399,
590 filed Sep. 1, 2004; U.S. Pat. No. 7,435,561 filed Jul. 25,
2006 and U.S. Pat. No. 7,485,428 filed Aug. 13,2007, as well
as, U.S. application Ser. No. 11/628,179, filed Aug. 30, 2007,
Ser. No. 11/800,318 filed May 4, 2007 and 61/179,793 filed
May 20, 2009.

What is claimed is:

1. A kit for a recombinase polymerase amplification pro-
cess of DNA amplification of a target nucleic acid molecule
comprising:

(a) one or more freeze dried pellets each comprising the
following reagents in the following concentrations,
which-unless otherwise indicated can be the concentra-
tion either when reconstituted or when freeze dried;



US 9,057,097 B2

15

(1) 1.5%-5% (weight/lyophilization mixture volume) of
polyethylene glycol;

(2) 2.5%-7.5% weight/volume of trehalose;

(3) 0-60 mM Tris buffer;

(4)1-10 mM DTT;

(5) 150-400 uM dNTPs;

(6) 1.5-3.5 mM ATP;

(7) 100-350 ng/ul. uvsX recombinase;

(8) optionally 50-200 ng/ul uvsY;

(9) 150-800 ng/ul. gp32;

(10) 30-150 ng/ul. Bsu polymerase or Sau polymerase;

(11) 20-75 mM phosphocreatine; and

(12) 10-200 ng/uL creatine kinase.

2. The kit of claim 1, wherein each of the freeze dried
reagents is in approximately the following concentrations,
which unless otherwise indicated can be the concentration
either when reconstituted or when freeze dried:

(1)2.28% (weight/lyophilization mixture volume) of poly-
ethylene glycol, wherein the polyethylene glycol has a
molecular weight of 35 kilodaltons;

(2) 5.7% weight/volume of trehalose;

(3) 25 mM Tris buffer;

4) 5 mM DTT;

(5) 240 uM dNTPs;

(6) 2.5 mM ATP;

(7) 260 ng/ul. uvsX recombinase;

(8) 88 ng/ulL uvsY;

(9) 254 ng/ul gp32;

(10) 90 ng/ul. Sau polymerase;

(11) 50 mM phosphocreatine; and

(12) 100 ng/uL. creatine kinase.

3. The kit according to either of claims 1 or 2, wherein said
kit comprises 8 freeze dried pellets.

4. The kit according to either of claims 1 or 2, wherein said
kit comprises 96 freeze dried pellets.

5. The kit according to any one of claims 1 or 2, further
comprising:

(b) a rehydration buffer for reconstituting said freeze dried

pellets, wherein said rehydration buffer comprises:

0-60 mM Tris buffer;

50-150 mM Potassium Acetate; and

0.3%-7.5% weight/volume of polyethylene glycol.

6. The kit according to claim 5, wherein said rehydration
buffer comprises

25 mM Tris buffer;

approximately 100 mM Potassium Acetate; and

approximately 5.46% weight/volume of polyethylene gly-
col, wherein the polyethylene glycol has a molecular
weight of 35 kilodaltons.

7. The kit according to claim 5, wherein said kit comprises

4 mL of said rehydration buffer.

8. The kit according to claim 5, wherein said rehydration
buffer further comprises 8-16 mM Magnesium Acetate.

9. The kit according to claim 8, wherein said rehydration
buffer comprises approximately 14 mM Magnesium Acetate.

10. The kit according to claim 5, further comprising:

(c) a 160-320 mM Magnesium Acetate solution.

11. The kit according to claim 10, where the concentration
of said Magnesium Acetate solution is approximately 280
mM.

12. The kit according to claim 10, wherein said kit com-
prises 250 puL of said Magnesium Acetate solution.

13. The kit according to any one of claims 1 or 2, wherein
said freeze dried pellets further comprise 50-1000 nM of a
first primer and 50-1000 nM of a second primer.

14. The kit according to any one of claims 1 or 2, wherein
said freeze dried pellets further comprises a nuclease.
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15. The kit according to claim 14, wherein said kit further
comprises a positive control, wherein said positive control
comprises a positive control DNA, a first positive control
nucleic acid primer, a second positive control nucleic acid
primer and a positive control nucleic acid probe, and said
probe is capable of being cleaved by said nuclease when said
probe is hybridized to said positive control DNA.

16. The kit according to claim 15, wherein said positive
control DNA comprises human genomic DNA, said first and
second positive control nucleic acid primers are each pro-
vided at a concentration of about 10 uM and said positive
control nucleic acid probe is provide at a concentration of
about 120 nM.

17. The kit according to claim 14, wherein said nuclease is
selected from the group consisting of exonuclease I1I (ex-
olll), endonuclease IV (Nfo) and 8-oxoguanine DNA glyco-
sylase (fpg).

18. The kit according to claim 17, wherein said pellets
comprise 50-200 ng/ul. of said nuclease.

19. The kit according to claim 18, wherein said pellets
comprise approximately 96 ng/ul exolll.

20. The kit according to claim 18, wherein said pellets
comprise approximately 62 ng/ul. Nfo.

21. The kit according to claim 18, wherein said pellets
comprise approximately 114 ng/ul. fpg.

22. A recombinase polymerase amplification process of
DNA amplification comprising the steps of:

(a) combining the following reagents in a solution in the

absence of Magnesium:

(1) at least one recombinase;

(2) at least one single stranded DNA binding protein;
(3) at least one DNA polymerase;

(4) dNTPs;

(5) polyethylene glycol;

(6) a buffer;

(7) a reducing agent;

(8) ATP;

(9) optionally at least one recombinase loading protein;
(10) a first primer and a second primer; and

(11) a target nucleic acid molecule;

(b) adding Magnesium to initiate the amplification reac-

tion; and

(c) incubating said solution until a desired degree of ampli-

fication is achieved.

23. The process of claim 22, wherein one or more of the
reagents of step (a) are freeze dried before step (a).

24. The process of claim 23, wherein step (¢) comprises the
following steps:

(1) incubating said solution for a first period of time;

(2) mixing said solution; and

(3) incubating said solution for a second period of time

until the desired degree of amplification is achieved.

25. The process of claim 24, wherein said first period of
time is about four minutes.

26. The process of claim 24, wherein said mixing step
comprises vortexing said solution.

27. The process of claim 22, wherein the Magnesium is
added in the form of a Magnesium Acetate solution.

28. The process of claim 22, wherein the Magnesium is
added to a final concentration of 8-16 mM.

29. The process of claim 28, wherein the Magnesium is
added to a final concentration of about 14 mM.

30. A recombinase polymerase amplification process of
DNA amplification comprising the steps of:

(a) providing the kit of claim 5;

(b) reconstituting at least one of said freeze dried pellets

with the following in any order:
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(1) said rehydration buffer;
(2) a first nucleic acid primer and a second nucleic acid
primer; a
(3) a target nucleic acid; and
(4) optionally water;

(c) adding Magnesium to initiate the amplification reac-

tion; and

(d) incubating said reaction until a desired degree of ampli-

fication is achieved.

31. The process of claim 30, wherein the Magnesium is
added in the form of a Magnesium Acetate solution.

32. The process of claim 30, wherein the Magnesium is
added to a final concentration of 8-16 mM.

33. The process of claim 32, wherein the Magnesium is
added to a final concentration of about 14 mM.

34. The process of claim 30, wherein said freeze dried
pellet comprises a nuclease and wherein said freeze dried is
also reconstituted with a nucleic acid probe, where said probe
is capable of being cleaved by said nuclease when said probe
is hybridized to said target nucleic acid.

35. The process of claim 30, wherein a plurality of freeze
dried pellets are reconstituted during step (b) and initiating
each amplification reaction simultaneously by adding the
Magnesium to each reconstituted pellet at the same time
during step (c).

18

36. The process of claim 30, wherein the reaction volume
after step (c) is approximately 50 pL..
37. The process of claim 30, wherein step (d) comprises the
following steps:
5 (1) incubating said solution for a first period of time;
(2) mixing said solution; and
(3) incubating said solution for a second period of time
until the desired degree of amplification is achieved.
38. The process of claim 37, wherein said first period of
10 time is about four minutes.
39. The process of claim 37, wherein said mixing step
comprises vortexing said solution.
40. The kit according to claim 3, further comprising:
(b) a rehydration buffer for reconstituting said freeze dried
pellets, wherein said rehydration buffer comprises:
0-60 mM Tris buffer;
50-150 mM Potassium Acetate; and
0.3%-7.5% weight/volume of polyethylene glycol.
41. The kit according to claim 4, further comprising:
(b) a rehydration buffer for reconstituting said freeze dried
pellets, wherein said rehydration buffer comprises:
0-60 mM Tris buffer;
50-150 mM Potassium Acetate; and
0.3%-7.5% weight/volume of polyethylene glycol.
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